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Summary

In the problem of allocating an observation into one of several populations, the linear, quadratic
and other discriminant functions are obtained from a distance based point of view. This approach
depends on a defined distance between observations, seems to be useful for mixed data and can be used
for handling missing values. The error rates can easily be computed. A comparison with the location
model for discriminant analysis is performed. The method is applied to previously published data and
also checked with simulated data.

1. Introduction

The most usually applied discriminant function for assigning an individual to one of two
populations IT, and IT, , is Fisher’s linear discriminant function (LDF)

L =[x =5 + IS ® - %y 1)

where x is a vector of observations obtained by taking measurcments on p continuous
variables, X, and X, are the means and § is the pooled sample covariance matrix, all three

of which arc computed from training samples of sizes ny , np obtained from IT, , IT,
respectively. The discriminant rule is:

allocate x to IT; if L(x)>0

and otherwise to IT, .

Ifit is supposed that population covariance matrices arc not equal, the assignment is based
on the quadratic discriminant function (QDF)

Keywords: lincar discriminant function; location model; statistical distances: mixed variables;
Fisher information matrix.
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where S; and S, are the sample covariance matrices. The QDF reduces (o the LDF when
S, and S, are replaced by S.

Discrimination based on LDF is optimal under the assumption of multivariate normality
and equal covariance matrices (Anderson, 1958). However, LDF is frequently used when
both assumptions are violated, with good results. This is so because lincar discrimination is
robust to non-normality and several studies and comparisons have been carricd out on the
behaviour of the LDF under non-optimal conditions (Gilbert,1969; Efron,1975; Krzanow-
ski,1977; Lachenbruch and Goldstein, 1979; Raveh, 1989).

Most applications of discriminant analysis fall, however, within the mixed case, that is,
where the variables are both continuous and discrete. An appealing approach to mixed
discrimination is the location model (LM). This model assumes a normal multivariate dis-
tribution for each pattern of discrete variables, e.g. 2 different states for & binary variables.
Krzanowski(1975) uses this model for discrimination using both continuous and binary
variables.

Let x be the continuous part of the vector of observations. The LM approach is based on
the discriminant functions
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where, for each state m of the binary variables, p{™ is the mean of x and Pim 18 the probability
of obtaining and observation inIT;, i=1,2, respectively. X is the common covariance matrix.
As (he number of states could be very large, both a log-lincar model and a regression model
are used to estimate p;,, and p™ respectively. LM has the following advanlages:

a) This approach is optimal under the assumption of conditional normality and it can be
cxtended to the multistate case ( Lachenbruch and Goldstein,1979).

b) Using real mixed data sets, LM gives comparable or better results than LDF (Krza-
nowski,1975; Vlachonikolis and Marriott, 1982).

¢) LM is equivalent to the so-called minimum distance rule (Krzanowski, 1986).

In contrast, LM needs a considerable computational effort, it has not been implemented
in standard statistical packages (Knoke, 1982) and the number of discrete variables should
be limited to six (Krzanowski,1983; a method for deleting mixed variables in LM is given
by Krusiriska,1989). Finally, simulation studies for LM would be rather complicated
(Schmitz et al, 1983) and the prior probabilities ¢, , ¢, of IT, , TI, respectively, are not
taken into account.

Logistic discrimination, as well as other discriminant methods, also allows discreic
variables, but the efficiency with respect to LDF is quite similar (Efron,1975; Viachonikolis
and Marriott,1982; Schmitz e al,1983; Seber,1984), so it is not considered here.



2. The maximum likelihood, the Bayes and the minimum distance
rules

Let ITy,...,IT, be g22 mutually exclusive populations. On the basis of a random veclor
X, let x, be an observation to be allocated. If p; (x) is the density of x in IT; , i=1,...,g, with

respect to a suitable measure A , the most gencral allocation rule is the maximum likelihood
rule (ML). This rule is based on the discriminant functions

Vii(x,) = logp(x,) — logp(x,). “)
When the probabilities of drawing an observation of IT;, i=l,...,g, arc known, i.e.

q; =Pi(I1), i=l,...,g, then the Bayes discriminant rule (BR) is based on
Bii(x,) = Vii(x,) + log(g;) — log(q))- (5

An alternative approach is based on the concept of distance and has been studied by
K.Matusita in several papers (1956,1964,1973). The M rule is: allocate x,  to the ncarest

population, i.e., if d(x, ,IT;) is a suitable distance, the rule is
allocate X, 10 TT; if  d(x,,[1) = M d(Xp,[T)),eensdl(X,IT,)) (6)

The M rule is quite general. For multivariate normal data and taking (he Mahalanobis
distance, M leads to a ML rule (Mardia et al, 1979). Using an extension of the Matusita
affinity to mixed variables, Krzanowski (1986,1987) proves that the M rule is also equivalent
to the LM discrimination.

3. The distance based classification rule

The distance based approach (DB) for regression and discriminant analysis was introduced
by Cuadras (1989). DB uses a distance 8(x,~,xj) between observations instead of the distance
d(x,IT,), and it reduces to LDF and QDF in special cases.

In short, and assuming the notation of the previous section, the DB approach to allocate
an observation x, by means of a distance function &(.,.), uses the discriminant functions

Fx)=H, —%u,. PO )

where

Hiy = [ 8%, pix) d M(x)

is the expectation of 82(x,,,x) in T, and

Hi= [ 8%y) pi ) pi (1) A0 dAY)



is the expectation of 82(x,y) in TIXTT; when x and y are assumed (o be independent of each
other.
The DB decision rule for allocating x,, is

allocate x, 0T1; if £ (x,) = minlf; (x,),..., fx,))- ®)

This classification rule depends on the density p(x) and the distance §(.,.), and it has
interesting properties. If x has the multinomial distribution, with n pairwise cxclusive states,

p)=TIp  xelo),
=1
where Zp,. =X x, =1, and we use the distance

8(x1.%0) = (1 = 8, )7 + pi) )

if, inside IT; , x; falls in statc r and X, fallsin state s, 1<r,s<n, where §, is the
Kronecker delta, then the discriminant function is given by

Jx)=(1=p) Ipy (10)

it x, falls in statc k. Thus rule (8) leads fo the allocation of X, o IT; if
I,ik = max{[)lk,....[)gk}.

If it is supposed that TT; is the N(;, X) population and we usc the squarc Mahalanobis
distance (x; — x) X '(x,-- X;), then we obtain

£ 06) = (%, — ) X7 (%, — ). (1
Hence the DB rule is based on the LDF. If I;is Np,, %), i=1,...g, where X, . 8

nced not be equal, then DB is based on a QDF. Note that here the DB rule yiclds a
minimum-distance rule. Under general conditions, it can be proved that the DB rule is
cssentially an M rule for any distribution of the variables.

Suppose that x and y are independent random vectors. Let 8,(...), 8(.,.) be distance
[unctions related to x and y respectively. Let us define the square distance

8(,) =83(.) +8%..)
or z = (x,y). Then (7) yields

Ji@) =f(x) + f(y). (12)

[hus the discriminant functions used in the DB approach are additive.
Asan application of (12), suppose that x is multinomial and yisindependently multivariate
ormal. Then a classification rule for the mixed case is based on
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4. Discrimination with mixed variables

From the point of view of distance, both the M and the LM rules (Krzanowski,1986) are
based on the square distance §°= 2(1-p) , where p is the affinity between two density
[unctions (Matusita,1956).

The DB approach can be used for any distance function, but it is preferable (o adopt the
distance between observations introduced by Cuadras (1988) and Oller (1989), based on the
so-called "the Rao-distance". Let p(x, 0) be a density function parameterized by 0 and assume
the usual regularity conditions. The square distance between the observations x;,x, is given
by

8 (x1xp) = (2 - )Gy (z) — 7)) (14)

d ; ¥ 3
where z =30 log p(x , 0) is the efficient score, interpreted as a column vector, and

E n_ - [2’1og p(x,0)
Gy=E(zz)= E( 90.00°

is (he Fisher information matrix. If the distribution is multivariate normal (14) yields the
Mahalanobis distance and we obtain distance (9) for the multinomial distribution.

Suppose now that the observable random vector w is partitioncd into (x,y), where x is
(possibly) discrete and y is continuous. If x is multinomial and y is multivariatc normal, and
X, y are independent each other, we may use the results of section 3 to obtain the discriminant
function (13). However, in practice x and y are correlated. An extcension of square distance
(14) is given by Cuadras (1989).

Let pi(x,0)) and p,(y,0,) be density functions and let us wrile w = (x,y),

= a_ao log p(x.8)), v= a—ae log py(y,8,), z=(u’,v’)". The squarc distance between w, and

W, is given by

& wiwy) = (2, —2)'G™ (2, — 2,), (15)

GM“ Glll’
i (v G)
and G, = E(wy’), G,,=G=Euv’), G,,=E(v’), the cxpectations taken with respect (o a

density p(w, 0,,6;) with marginals p,(x,8)), py(y,8,). The existence of the density
p(w, 6,,8,) is proved by Cuadras (1991a).

where



In practice parameters 8,, 8, are unknown. From a sample of size N of W, we can obtain
the maximum likelihood estimate of 0, taking into account density p,(x,0,) and similarly
for 0, . The 6, ; 62 obtained are consistent estimates of the true value of the parameters with
respect 1o p(w, 6,,8,). So we can casily obtain a consistent estimate of G. However, also in
practice, only the marginal densities are known. The DB approach provides a discriminant
decision rule, as it is based on distance (15) which can be estimated and consequently a
sample version of discriminant rule (7) is available.

Example: Let x be distributed as Poisson with mean A and y distributed as N(u,06%), with
o’ fixed. The efficient scores are

u-‘;", v=134
E@w)=0, E0=0, E@’) = 1A, EGA) = l/o*
and
E(uv) = . (=D -wl=0,/ 0
)ch - Xy »

where o, is the covariance between x and y. The maximum likelihood estimate of A and
M obtained from a sample (x,, y,),...,(tn, yx) are the sample means X and y respectively. So
the estimate of G is given by '

) S5 (.?.sﬁ) llsﬁ

& (si/? sx,/(.?.sﬁ)]

where sf and sf are the sample variances and S,y is the sample covariance. Note that
SIE's) = o) E25) = 53 (525}~ $3) >0,
hence & is a positive definite matrix. Distance (15) yields
(1 =) 1, O = 32) /2 G(Cy — x) 17, (31 = y) / ) =
=X =Xy — )'2)18-'(-\'1 = X2 1= )2,

where § is the sample covariance matrix. Therefore the DB rule is based on the LDF.
However, if x is distributed as negative binomial, i.c., with probability density function

p) = Ll'%? p'A-p, x=012,..

where both r and p are unknown parameters, then the DB rule is not linear.



5. The effect of prior probabilities

I the prior probability g; that x, belongs to IT; is known and we take distance (9), we
find 8%(x,,x) =0 if x, € IT; and 8%(x,.x) = g+ qj"l ifx, € IT;, hence I;, = ¢ +(g-2) and,
as I1; =0, we oblain the prior discriminant function fi(x,) = ¢;' + (g — 2). As the prior and
the posterior information may be interpreted as independent of cach other, taking into account
(12), we find that ¢;* + (g —2), or belter g:' =1 (in order to consider a distance, as adding

the constant 1-g does not affect the classification rule) should be added to (7) to obtain the
posterior discriminant functions

fi(x,) = H;,~ %u,. +q' -1, i=1,..g.

Suppose now that IT; is N(u;X). The ML decision rule is based on the discriminant function

# 1
Via) = (= ) E7%, = 50~ W) (1 + 1),
while the Bayes decision rule (BR) is based on

Bi(x,) = Vii(x,) + logg; — logg;.

The DB rule is based on

et =
Dii(x,) = V(X)) + (a5 = ;).
The decision rule using ML is
allocate  x, to T if Vi(x,)>0 forevery j#i,

and similarly for BR and DB.

For ¢, =...=q,=1/g, we find Vij=B;=Djy. In general, there is a certain difference
between Bj; and Dj; , but this difference is not too marked. For example, for g=2, this
difference as a function of Y=g, can be appreciated below.

Y= 02 0.3 0.4 0.5 0.6 0.7 0.8
logy—log(l-y)= -138 -0.84 -04 0 04 0.84 1.38

[(1—7)“-7-‘1%= -1.87 095 041 O 041 095  1.87

Suppose next that the random cvents A,,...,A,, have the conditional probabilitics
Pr(A, /TI) =py, k=l,..m,i=l,..g.

If A; occurs, the BR rule is :
allocate to IT; if gpy>qpy forany j#i.
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The Bayes decision rule is based on the discriminant function

b;j= logp; + logq; — logp;, — logg;,

while the DB rule is based on
) L ) (PR =
dj= (l’jlc] -pa)+ E(Ilj '—gh.
Again supposc g=2. Let us write a=pj, B= Pi» Y=¢q, and consider the functions
b(o,B.y) = log(a) - log(B) + log[y/(1 - )],

d(oBy)= (B = o')2 + (y= 0.5)(1 - ).
For y=0.5 we take the same decision because b(ouB,y) > 0 iff d(oB,y) > 0. In general, let
us consider the unit cube U < R® and the measurable sct

C={(apy) | baB.y). dopy) >0} cU.

We take the same decision as long as (o,,y) € C. The volume of U is 1 and, after some
tedious calculations, the volume of C is found to be 0.968. In other words, the decision taken
is practically the same using cither BR or DB.

6. Distance based discrimination under estimation

The sample discriminant rule for the DB approach can be stated from a data analysis
point of view using only distances, i.c., without knowing the probability density function.

Suppose that samples Cy....C, of sizes Ny,....N, are obtained from I,,....IT,, respectively.
Suppose that a distance matrix D= (8;(k)) can be computed on the observations of C; by

means of a distance function §(.,.), which can be computed on the basis of the obscrvable
variables. Let x, be an observation to be allocated and let 8(x,,/) be the distance from X3
to cach element of C;. , where i € C,.

The sample counterpart of (7) is the discriminant function

I 1
fix,) = ZE 8 (x,.4) - 27 280 k=l..g

ki
and the DB rule is also given by (8).

Actually this rule is based on several distances between means. If D, is a Euclidean
distance matrix, x, and C; can be related to a Euclidean configuration P, Py.....,Py in such
a way that fi(x,) =(12(—15,P), where d(.,.) stands for the Euclidean distance and P is the
centroid of P;, i=1,...n.. This property is esscentially valid for a non-Euclidean distance
(Cuadras, 1989). Therefore the DB rule leads to an M rule.

For mixed data Gower (1971) proposes the Euclidean square distance (I,-f =1-s; where
s;j s given by
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P
5=, -l xa—xi | IR)+a+al/[p+(g—d)+1] (17)
k=1
where p is the number of continuous variables, @ and d are the number of positive and ncgative
matches, respectively, for the g dichotomous variables, and o is the number of matches for
the » multistate variables. R, is the range of the continuous variable k. It is necessary to
introduce appropriate corrections on s; when some values arc missing, but then D, could
be a non-Euclidean distance matrix. However it is not an obstacle for the DB approach which,
conscquently, can be used in the case of missing values. Note that if we take ranks on the
continuous variables, we obtain a nonparametric approach.
Finally, the estimalc of the probability of missclassification by using the leaving-one-out
mcethod, can be computed casily from the symmetric supermatrix

where Dy =D, is defined as above and D, = (§;) contains the n,- n, distances from each
of C, tocachof C;.

Further theoretical and practical aspects of this method have been studied and reported,
not in a final form, in a mimcographed lecture notes of the author (Cuadras,1991b).

7. Real examples

The aim of this section and scction 8 is not to give an exhaustive comparison of the
performances of the ML, BR and DB methods but to show that the DB approach is useful
and may be taken into account for discriminant analysis. Five real data examples were studied
and the leaving-one-out procedure for obtaining the individuals misclassified was used by
computing the distance matrices described in the previous section.

7.1. Multinomial data

The first example from linguistics was studied by F. Rosés and it is unpublished. In

Catalan language, a word containing any of the following strings

ia i ie i€ & io i6 i0
after a consonant letter (i.e. ciencia) may be pronounced by using cither one (e.g. "ciencia")
or two syllables (e.g. "ci-tncia"). For many catalan words the pronunciation has been
established as monosyllable (IT;) or bisyllable (IT, ), but there is no valid general rule for
any word containing these strings.

To predict whether a word containing these strings should be pronounced monosyllable
(T1,) or bisyllable (IT,) , two samples of 146 and 43 words, belonging to T, and TT,
respectively, were obtained at random from a dictionary and recorded (see Table 1) according
to [ive categorical variables (sec Table 2).
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Table 1
Words obtained at random and coded as multinomial data

o NN ANNOCODANANANANNODNNONNNOON~NOODNNNDODOO A
B
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1
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Table 2
The variables and codes used in Example 7.1.
Variable Name States and code (in parenthesis)
1 String ia(l)ia (2)ie 3)il @) & (5)
io (6) 16 (7) id (8)
2 Location with respect Pre-tonic (1) Tonic with accent (2)
to the syllable Tonic with accent on the second

vocal (3) Post-tonic (4)

3 Location with respect Initial (1) Medial (2) Final (3)
to the word

4 Consonant before i B(1)C(2) D@3) ... V(17)

5 Spanish pronuntiation Monosyllable (1) Bisyllable (2)

Nonexistent in Spanish (0)
(For example, "embolia” is coded as 14 3 9 1 and belongs to ;).

As the information is qualitative with many states coded conventionally, LDF and QDF
need not be applied here (see Lachenbruch,1975, p.54). The ML rule could be used but,
because the multinomial variables are not independent, this rule is rather complicated. Using
a log-linear (LL) model (sce Krzanowski, 1988, p.352) is also problematic because there are
many emply cells and parametric estimation fails when first-order interactions are considered.
So, only main effects can be included. The model is then equivalent to the assumption of
independence, but the data does not fit this model, as the chi-square statistic is very significant.
By contrast, the DB approach using Gower’s distance (which reduces to the matching
coefficient in this case) can be applied. However, for comparison purposes, the four rules
LDF, QDF, LL and DB arc used with the following misclassifications showed in Table 3.

Table 3
Multinomial data. Comparisons among the distance based approach (DB), the linear
discrimination (LDF), the quadratic discrimination (QDF) and the log-linear model (LL)
for the multinomial data on Table 1. The misclassifications are obtained by using the
leaving-one-out procedure taking variables 1 to 3 (a), 1 to 4 (b) and all variables (c).

a i b C
I, Iz  Total |. I Il Total | ITy Il  Total
LDF 73 8 81 54 14 68 39 15 54
QDF 89 1 90 89 1 90 36 2 38
DB 50 11 61 56 8 64 7 1 8
Ll 60 9 69 46 12 58 - - -

Remarks:

1) LDF and QDF are used only for comparison purposes.

2) LL cannot classify two words in b because we find null likelihood in both groups.
3) LL cannot classify many words in ¢ by the above reason.
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Note that, as variable 5 has a high influence on the classification, we [irst consider variables
1 to 3 and 1 to 4, but only for 3 variables the Ieaving-onc-out procedure for LL is not
confliclive.

7.2. Continuous data

The sccond real data sct is Smith’s data consisting of 25 normal (IT, ) and 25 psychotic
(TT, ) individuals, who were classificd on the basis of 2 continuous variables. This sct was
studied by Kendall (1957) and Mardia et al. (1979) to illustratc the QDF. The third sct is
Lubischew’s data consisting of 2 measurcments on samples of three specics of Flca-Becetles
Chetocnema concinna (I1y), C. heikertingeri (I1,) and C. heptapotamica (I15), the samples
sizes being 21, 31 and 22 respectively, which illustrate the LDF as shown by Seber (1984)
and Krzanowski (1988). From Table 4 it is seen that the results obtained are quite similar to
those given by the classic methods.

Table 4
Continuous data. Comparisons among the distance based approach (DB), the linear
discrimination: (LDF) and the quadratic discrimination (QDF). The misclassifications
are obtained by using the leaving-one-out procedure.

2.Smith’s data (Kendall, 1957, p.154)[ 3.Flca-Beetles species (Seber, 1984, p.333)
B I, Total M 1 I3 Total
LDF 0 4 4 LDF 1 0 0 1
QDF Z 2 4 QDF 1 0 0 1
DB 1 3 4 DB 1 0 0 1

7.3. Mixed data

The fourth set is "the advanced breast cancer data” used by Krzanowski (1975). From
186 cases of ablative surgery for advanced breast cancer, 99 were classified as "successlul
or intermediate"(I'T;) and 87 as "failure"(I,). The study includes 6 continuous variables and
3 binary variables. Gower’s distance (17) was used in the DB method. For the continuous
variables in the cancer data, we take ranks instecad of numerical values, as the ranges were
too large. The fifth sct, taken from Mardia et al. (1979, p.294), is also uscd by Krzanowski
(1982). This data is concerned with the average grade (a single quantitative variable) and a
qualitative variable with three states: 2, 3 or 4 A-levels. Gower’s distance is used for the DB
mcthod. The frequency of misclassifications for the complete data are high: LDF(313),
QDF(319), DB(280), LM(310), as the 7 groups were quite overlapped. So, we select 3 separate
groups, i.c., as denoted by Mardia et al., 1, 1I(i) and — °, which we denote by IT, , IT, and
I15 , respectively, the sample sizes being ny = 25, n, = 67, ny = 26. Sce Table 5.



15

Table 5
Mixed data. Comparisons among the distance based approach (DB),
the location model (LM) and the linear discrimination (LDF)
The misclassifications are obtained by using the leaving-one-out procedure.

2.Cancer data (Krzanowski, 1975) | 3.Students data (Mardia et. al., 1979, p-294)
I I Total I I I3 Total
LM 34 27 61 LM 13 38 7 58
LDF 41 31 72 LDF 11 43 7/ 61
DB 33 32 65 DB 12 23 11 46

8. Simulations

As LDF and QDF provide optimal solutions for continuous normal data, no simulation
is studied for these data. So, we focus our attention on mixed data, i.c., the variables are both
continuous and discrete (binary or multistate). In addition, if the conditional distribution for
each state of the discrete variables is normal, the LM approach is also considered optimal
(Lachenbruch and Goldsicin,1979) and no simulation scems to be necessary. Consequently,
this study is concentrated in other different situations. For normal data, the methodology is
bascd on Schmitz e al.(1983).

8.1. Two populations and four normal variables

Let us consider the mean vectors
Ho=(0000), m=(1111),

and the covariance matrices

1.0 0.5 0.5 0.5 10 05 05 -0.5
s 2[05100505|  _|-05 1.0 0.5 05
*710505 1005 “1T105 0.5 1.0 0.5/

0.5 0.5 0.5 1.0 -05 05 -05 10

The distributions N (u,,X,), N(u,. X)), N@,,X,) and N, %) are denoted as
(0,0),(0,1),(1,0) and (1,1) respectively.

Samples of size 100 of a random vector (x;, X,, X3, x;) with distribution (0,0),(0,1),(1,0)
and (1,1), respectively, were generated. Variables x; and x;, were discretized into two and
three categories respectively:

X3=0 if x3<0, x3=1 if ;>0,

=1 if <1, X4=2 il =1<x<1, X{=3 if x> 1.
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Twelve different discriminant analyses were performed on these populations on the basis of
(x1, X2, x5, x3). The results are given in Table 6. Giving rank number 1 for the best and rank
4 for the worst method, the average ranges obtained are:

LDF QDF DB LM
304 166 216 3.12
Table 6
Comparisons among LDF, QDF, DB and LM for several combinations of normal populations

(four variables), where two variables are continuous and two variables are discretized. The
misclassifications are obtained by using the leaving-one-out procedure.

(0,0) (1,0) (0,0) (1,0) (0,0) (1,0) (0,1) (1,0)
LDF 34 25 59 31 1127 58 31 27 S8 IS S22 5537
QDF <) et ) 32 27 59 33 24 57 12 21 =38
DB 31 27 58 2912611155 28 260154 19 21 40
LM 33111 27 - 60 BEMIN26'58 30 28 58 14 27 41

(0,1) (1,0) (0,1) (1,0) (0,0) (1,1) (0,0) (1,1)
LDF 29RO 12 28 40 31 15 46 29 14 43
QDF 2.7 i S| R i ) 30 8 38 28 10 38
DB 245 12 36 IT 265937 31 10 41 26 11 37
LM 235 19 33 12 | 275430 28 16 44 26 16 42

0,0) (1,1) O,1) (1,1) 0,1) (1,1) 0,1) (1,1)
LDF 28 10 38 12 12 124 B 1208 2] 11 7 18
QDF 28 6 34 F N1 20 9 8 .17 By ik
DB 27 13 40 TR bl a0 9 10 19 10 10 20
LM 28.0615,°.43 12 114,26 10 16 26 9.779 148

8.2. Two populations and four exponential variables
Let (x;, X5, x3,x4) be a random vector where each x; follows the negative cxponcnli:il
distribution with pdf
f(x,0)=exp(-(x-0)) if x>0,
=0 otherwise.

Cuadras(1991a) proposes a method of constructing probability distributions with given
marginals and given covariance matrix. The covariance matrix uscd in this example is z,
(see section 8.1). Samples of size 100 of (x;, x,, X3, X,) following this multivariate distribution
for 6 = 0 (so the mean vector is (1,1,1,1)) and also for 8= 1 (so the mcan vector is (0,0,0,0))
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were gencrated. Variables x; and x; were discretized into two and three categorics respec-
tively:

x5=0ME "x3 <10, 12x5= LU Ty >0,
=1 if <05, x4=2 if 0.5<x<1, X4=3 if x4> 1.

The misclassifications obtained for discriminating the population with =0 and =1 arc
given in Table 7. The average ranges obtained are:

LDF QDF DB LM
a6 2210 V1362

Table 7
Comparisons among LDF, QDF, DB and LM for twelve pairs ol populations. The marginal
distribution of the four variables is exponential and the covariance matrix is given, except that
two variables are discretized. The misclassifications are obtained by using the leaving-one-out
procedure.

! 2 3 -+ 5 6 7 8 9 10 11 12

LDE “"58 99 52 59 56 56 62 58 49 48 55 52
QREY+3 52 46 58 49 49 55 55 44 51 58 22
DB 49 48 43 52 45 44 53 50 39 38 44 44
LM 59 53 48 60 55 53 66 60 49 53 59 55

8.3 Three populations and eight variables

Let us denote by u=(l,...,1) the vector of ones and consider the [x8 mean vectors
,=0u, py=u, p=2u,

and the 8x8 covariance matrices

1.0 05 ... 05 10 0.7 ... 07
3, =05 10... 05| 5 _|07 10 ... 07
05 0.5 ... 10 07 07 ... L0

10 0.5 ... =05

5| 05 10.. 05

05 05.. 10

The normal distribution N(u;.X) is denoted by (i,j), i=0,1,2, j=0,1,2. Again samplcs of size
100 of a random vector (x,,...,xg) with distributions (i,j), i=0,1,2, j=0,1,2, were generated.
Variables xj,...,xg were dichotomized:

=0 if <0, x;=1 if x>0, j=3,..8.
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Several discriminant analysis were performed on the basis of (v), X, Xj,..., X§), where
X;,X, are continuous and xj...., Xz are binary variables. The misclassifications obtained are
presented in Table 8. As the LM method finds zero cell estimates for 2 continuous and 6
binary variables, the last binary variable was discarded and the simulations repeated with 2
continuous and 5 binary variables. The average ranges obiained for cight variables are

LDF QDF DB
2.33 W2:540 41,12
Omitting a binary variable, the LM works, and the average ranges are
LDF QDF DB LM
3.125 3.625 1375 1.875

Table 8
Comparisons among LDF, QDF, DB and 1M for scveral combinations of three normal
populations (eight variables), where two variables are continuous and six variables are
dichotomized. The misclassifications (left column) are obtained by using the leaving-one-out
procedure. This computation is repeated omitting a binary variable (right column).

0,0)(1,1)2.2) (0,1)(1,2)(2,0) (0,2)(1,002,1) (0,00(1,1)(2,2)
LDF 109 109 105 95 94 97 101 99
QDF 134 124 93 96 96 94 92 95
DB 100 104 90 86 87 92 92 95
LM - 109 E 87 - 91 - 83

(0,1)(1,2)(2,2 (0,2)(1,0)(2,1) (0,2)(1,1)(2,0) (0,2)(1,1)(2,1)

LDF 85 81 94 97 98 98 100 105
QDF 103 95 96 94 1 118 110 118
DB 74 72 87 92 90 89 96 98
LM - 75 - 91 - 105 - 106
(0,0)(1,2)(2,0) 0,1)(1,2)(2,2 0,0(1,0)(2,1) (0,1)(1,0(2,0)
LDF 106 101 87 83 132130 142 147
QDF 89 95 104 98 141 145 137 140
DB 93 93 75 ) 21 122 119 118
LM - 88 - 75 - 128 - 121

9. Conclusions

The advantages of this distance-based method can be summarized:
a) For continuous variables and adopting the Mahalanobis distance, the method is bascd
on the linear (or quadratic) discriminant function.
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b) It is possible to take into account the prior probabilities with similar results o the
Baycs decision rule.

¢) The mixed variable case can be tackled in a simple algebraic way, provided that a
suitable distance is defined. No restrictions are necessary on the number of binary variables
and a solution for handling missing valugs is available.

d) The Icaving-one-out procedure for estimating the probability of misclassification can
be casily applied.

¢) Parameltric estimation may fail in both log-linear (for multinomial data) and location
model (for mixed data) when there are many discrele variables or many states. Except for
the capacity of the computer, no limitations exist for the distance bascd method.

10. Computer programs and data sets

The linguistic data (section 7.1) was provided to us by F. Rosés and both BMDP and
SPSS were used for performing a log-linear discrimination. The cancer data (section 7.3)
was obtained while the author visited the Institute of Computer Sciences, Wroclaw, and is
due to W.J. Krzanowski, who also provided us with a general location model program for
discriminant analysis. A multivariate package, called MULTICUA, created by C. Arenas,
C.M. Cuadras and J. Fortiana, was used for performing the linear, quadratic and distance
based discriminant analyses. Also, a program from A. Miiarro was cmployed to gencrale
multivariate normal data. Finally, the generation of corrclated data with given marginals, is
obtained by using a program written by the author.
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